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Abstract 

 

The methods to study capillary waves have been reviewed, together 

with the emerging practical applications of theirs and new theoretical 

developments in the field. The focus is on monochromatic ripples of 

frequency in the range 0.1-10 kHz. A capillary wave apparatus has been 

constructed that combines several recent advances on the technique. It 

is based on profilometry of waves decaying with distance, with a high-

speed video camera detecting light refracted by the surface. A code to 

process the images has been developed that executes a regression 

analysis to determine the characteristics of the wave. High precision 

and accuracy have been achieved: standard deviation from the mean of 

±0.5% for the wavelength and ±7% for the decay length; mean 

deviations from the theoretical values ±0.2% for the wavelength and 

±5% for the decay length. An analytic approximation for the dispersion 

relation has been used to determine the Gibbs elasticity of a surfactant 

monolayer from the data for decay length vs. frequency. The elasticity 

of an octanol monolayer has been determined with precision of 

±1 mN/m, in excellent agreement with the theoretical value. Surface 

tension can be measured from the wavelength data with precision of 

±0.3 mN/m. It has been demonstrated that the effect of the surface 

elasticity on the wavelength is significant and accurate wavelength data 

can actually be used to determine the elasticity if the surface tension is 

known. 
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1 Introduction 
 

The ripples at a liquid interface carry rich information about the properties of the interface and 

the processes taking place there. The wavelength  can be used to infer the surface 

tension  [1], while the decay length Ld and the decay time td are controlled by the viscosity of 

the liquid [2], the Gibbs elasticity E of the adsorbed surfactant monolayer [3], the diffusion- [3] 

or barrier-controlled [4] adsorption-desorption kinetics, and the related [5] surface viscosity. 

Numerous studies have demonstrated the potential of the liquid-surface relaxational 

spectrometry [4] – i.e. the surface wave apparatus – as a tool for characterization of interfaces. 

The method is quick and, at least in theory, could be very precise. Its main use currently is for 

characterization of liquid interfaces, including surfactant monolayers [4,6], polymer layers 

[6,7], electrolyte solutions [8], sea water [9], oil films [10] etc. The technique is excellent for 

measuring ultralow interfacial tensions [11,12] and to detect surface phase transitions [13,14]. 

Capillary wave apparatuses have been utilized as contactless tenisometers-viscosimeters for 

surfactant-free liquids [15,16,17]. Practical applications of these tools are also beginning to 

emerge. A surface relaxational spectrometer was used in a sensor for exhaled pulmonary 

surfactant [18]. Spherical waves on inkjet droplets are being used to study the kinetics of 

adsorption right after jet break-up, and were claimed to carry information about the variation 

of the viscosity of the droplet with time [19,20,21]. Similarly, the growth of waves on the 

surface of a jet before break-up has been used to determine the surface tension of the jet [22]. 

 The capillary waves are responsible for several mechanisms of destabilization of jets, films 

and droplets: examples are the jet break-up in continuous inkjet printing [23]; bubble 

entrapment and gas filament break-up [24]; ripples break liquid films via the Scheludko-Vrij 

mechanism [25,26,27] etc. As a result, the fundamental understanding of the wave growth is 

essential for the control of the destabilization of multi-phase systems. The growth rate of waves 

at the surface of an electrified jet can be used to estimate the break-up length [28] and 

understand the transition from varicose to whipping instabilities in electrohydrodynamic 

jetting [29]. The ripples play a role in a number of surface phenomena, sometimes in a non-

intuitive way. For example, the capillary waves in thin films and membranes contribute 

significantly to the surface forces [30]. Near the critical point, they contribute also to the value 

of the interfacial tension [31]. Thermal capillary waves have been hypothesized to control the 

propagation of the three-phase contact line over heterogeneous solids [32]. A small body (such 

as an atomic force microscope tip) that interacts with the surface of a liquid experiences wave 

resistance, i.e. it generates energy-dissipating capillary waves [33]. 

 Unfortunately, the surface wave spectrometry has not found widespread use, despite the 

obvious value and the continuous efforts since the 1930s. Currently, ripple tanks are widely 

available for educational purposes, but no commercial scientific apparatus exists [6]. The reason 

are a number of technical complications (discussed, e.g., in ref. [6,34]) and perhaps also the fact 

that the interpretation of the data is not straightforward.  

Here, we review the current state of the art of the methods used to study ripples, the 

experimental difficulties, and some recent theoretical advances in the field. We then proceed to 

show how widely available laboratory equipment – loud speaker and high-speed video camera 

– can be used to generate and characterize capillary waves with high precision, comparable and 

even superior to most data reported in the literature. 
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2 Experimental techniques 
 

2.1 Wave taxonomy 

  
 

 

 
Figure 1a. Surface wave taxonomy. 

b and c. Methods to generate and detect the properties of a wave. 

A variety of waves exist at the interface between two fluids (Figure 1a). Waves of different 

frequency are controlled by different factors. Our focus here are the ripples, i.e. capillary waves 

of wavelength of the order of ~0.1-1 mm and frequency ~102-104 Hz. Waves of wavelength  

approaching or exceeding the capillary length (/g)1/2 are affected by gravity, and one speaks 

of capillary-gravity waves (1-10 mm, 10-100 Hz for water), or pure gravity waves ( > 1 cm, 

 < 10 Hz). The study of capillary-gravity waves has a long history in relation to sea 

science [35,9,10]. On the other end of the spectrum are the thermal capillary waves, of 

frequency in the range 104-106 Hz. This range is accessible with light scattering and X-ray 

reflectivity; the results from these techniques have been recently reviewed in detail by 

Langevin [6]. 

 At the surface of single-component Newtonian liquids, the Navier-Stokes and Laplace 

equations produce a wave dispersion condition that has a single solution, corresponding to a 

weakly-decaying transverse wave. In contrast, for interfaces of inherent surface elasticity (such 

as those covered with a surfactant layer, the surface of a liquid mixture etc.), the wave dispersion 
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condition has two physical solutions [5] – i.e., ripples exist in two wave modes. One is the 

regular transverse (Laplace) mode; the other is longitudinal and fast-decaying (Marangoni or 

Lucassen) mode [36]. The Laplace and the Marangoni waves of the same frequency are of 

slightly different wavelength, very different decay length, and different depth of protrusion into 

the substrate. The two modes are studied using two respective types of capillary wave 

apparatuses. The decay length of the Laplace mode varies strongly with the surface elasticity, 

but at E > 1-3, the surface becomes completely tangentially immobile and the dynamic surface 

characteristics cease to have an effect on the wave [4,3]. The Marangoni mode is more sensitive 

to the viscoelastic properties of the surface at high E, but is more difficult to study [37,38,39]. 

Our focus here are the transverse Laplace waves. 

 The next distinction is the one between linear and non-linear capillary waves. When the 

amplitude a is comparable with the wavelength , non-linear effects appear, due to the 

convective term in the Navier-Stokes equation, the non-linear nature of the Laplace boundary 

condition, and the non-linear surface equation of state of the surfactant monolayer. The 

respective “turbulent” waves are a whole separate field of study that has been recently reviewed 

by Falcon and Mordant [40]. Among the major achievements of the theory of the turbulent 

waves are the explanation of the spectrum of the sea waves, the modelling of the resonant 

interactions between waves, and the discovery of several mechanisms of wave energy 

dissipation. Non-linear waves will not be considered here, but the experimental methods used 

to study them will be discussed, as they are applicable also to linear waves. 

 Waves in geometrically confined systems differ significantly from those at a flat 

surface [41]. Particularly important are the waves on a cylindrical jet, in view of their role in 

inkjet printing [23]. Waves on droplets are another important example that has many 

applications [19,20,21]; confinement brings about new effects also in waves in liquid 

films [27,30,42]. 

 The linear waves on a flat surface can have different geometry depending on the source 

(propagating or standing, flat or radial waves). The nature of the source controls also the space-

time decay of the waves. A stationary source of fixed power, after a short non-steady state 

period, will produce waves that decay with space but of time-independent amplitude. A short 

disturbance of the surface will generate waves decaying also with time. The apparatus we 

discuss in sec. 4 below is designed for investigation of flat Laplace ripples decaying with space. 

  

2.2 Techniques to generate waves  
An apparatus for characterization of ripples requires two main elements: a generator of waves 

and a detector. The most common methods to excite Laplace ripples are mechanical (see Figure 

1b). In this case, the surface wave generator consists of an electromagnetic acoustic generator 

and a transmitting device. The acoustic generators are made of a sinusoidal voltage generator 

connected to an electrodynamic vibrator, producing frequency in the range of 

10-1000 Hz [43,44,4]. The transmitting device is usually a dipped wire or plate [43], a glass 

capillary [4] or a plastic cylinder [44] connected to the acoustic generator. The container can 

also be used as the transmitting device [12,45,46,47,48]. Chantelot et al. [49] used a floating 

magnet driven by an electromagnetic actuator instead.  

 The advantages of the mechanical generators are simplicity of construction, the range of 

options to control the amplitude of the wave (via the power of the acoustic generator, the size 

of the dipping wire etc.), and most of all, the versatility – with minor modifications, the 

equipment can be used to create flat, radial, linear and non-linear waves on any interface. 

Among the disadvantages are that non-linear oscillations appear in the vicinity of the resonance 

frequencies of the transmitting device (see sec. 4.2 below); the complex role of the contact angle 

and the meniscus (a meniscus deforms the surface yet it is required for efficient transmission 

[47]); finally, careful cleaning of the dipping plate or the capillary are necessary. 
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 To overcome the latter two disadvantages, several contactless generators have been 

developed. The most common of those is electrocapillary excitation, where oscillating local 

electric field is used as a transmitter [14,15,16,17,50,51]. The field is created by a metal blade 

(for flat waves) or by a sharp edge (for radial waves). The electromechanical transmission can 

produce, in theory, undesired electrocapillary effects disturbing the wave, but the question has 

not been studied systematically. A new promising contactless method utilizes pneumatic 

transmission [34], where the wave is excited by a local pressure fluctuations of the gas pillar 

between a wave guider and the studied surface. In theory, this method can also affect the waves 

by producing local cooling due to accelerated evaporation, as variations of the temperature with 

even small part of a degree can cause thermal Marangoni effect [52] disturbing the wave. 

Another disadvantage is that the pneumatic method is applicable for radial waves at the 

liquid|air interface only. A third contactless method has been proposed where focussed 

ultrasound beam is used to generate radial waves at a liquid|liquid interface [11]. 

 There are various options for generating capillary waves on the surface of a jet, which are 

used to control its break-up [23]. The standard approach is mechanical modulation of the jet 

with a piezoelectric device. A novel and flexible method is via periodic thermal modulation: a 

heater is installed in the vicinity of the nozzle, and it produces temperature swings under the 

action of voltage pulses. These pulses results in a thermal Marangoni effect that excites the 

waves [23,53]. The same approach is, in theory, applicable also for excitation of waves on a 

flat surface. 

 

2.3 Techniques to detect waves 
Point methods for wave characterization. It is common the detection to be in a set of fixed 

points of the surface. The first class of point methods is based on interaction of the surface with 

focussed beam of light. The classical approach is to use cathode-ray projection tube as a spot 

source of light, for viewing waves stroboscopically [43]. The light spot scans past a horizontal 

slit [43]. Laser probe can be used in a similar manner [15,50], and is currently the most popular 

detection technique to study linear waves. Optical methods based on absorption, reflection or 

refraction of laser beams are popular also for non-linear waves [40]. The wavelength can be 

determined by using the ripples as diffraction grating [54,55]. A laser interferometer has been 

developed [16,17], where the phase difference between a beam reflected from the liquid surface 

and a reference beam is used to infer the amplitude of the wave with precision of the order of 

5 nm. A similar approach is used by the laser Doppler vibrometer that allows the surface 

velocity in a point to be determined [56,57]; this method requires the addition of light scattering 

particles in the studied fluid. Local radiative heating of the surface is possible with some of the 

optical detection techniques, which can cause Marangoni disruptions of the surface.  

 Another class of detection methods is via electric probes. Noskov used a capacity wave 

detector [4], which is a metal plate parallel to the surface of width much smaller than the 

wavelength. The oscillation of the liquid leads to oscillation in the capacity of the condenser 

and alternating electric current (a type of a Kelvin probe). A grounded platinum plate in the 

bulk liquid is used as a reference electrode. Capacitive wire gauges are a common method to 

study non-linear waves [58,40]; the amplitude of the wave in a point is measured by making 

use of the proportionality between the capacity of a thin wire and the immersion length. 

Amplitudes smaller than a few m are difficult to detect with this method, which limits its 

application to long-wavelength or non-linear waves. 

 Space-time methods for wave characterization. An alternative approach is to observe 

the wavy surface as a whole (instead of a few test points). Such space-time measurements are 

quickly winning ground in the field of non-linear waves, and Falcon and Mordant listed seven 

methods of this type [40]. For linear ripples, this approach is uncommon and only a few recent 

studies utilized it. Shmyrov et al. [34] used optical interferometry and spatial phase shifting to 
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quantify the profile of a wavy surface with high accuracy, producing a 3D reconstruction of the 

entire interface. They obtained the wave characteristics by post-processing of the 3D 

reconstruction. A much older technique that can be classified as space-time is direct optical 

imaging of the surface, which is based on the lens effect from the wave crests and troughs on 

the light crossing the rippled surface [9,59]; this option allows 3D reconstruction under the 

condition that the surface shape has flat or radial symmetry, which is fulfilled for the ripples 

normally investigated with capillary waves apparatuses. Moisy et al. [60] reconstructed the 

surface topography of gravitational-capillary waves (~10 Hz) using free-surface synthetic 

Schlieren technique (distortion of a printed pattern by refraction from the deformed liquid 

surface); a number of variants of this technique exist [48,49,61,62,63] and Vinnichenko 

et al. [44] used reflection rather than refraction. The variants of the Schlieren imaging are 

somewhat limited in space resolution and are more suited to study gravity-capillary waves than 

shorter capillary waves. The use of high-speed video cameras as detection device is becoming 

more and more common, especially for non-linear gravity and gravity-capillary waves [40,62]; 

few studies, however, utilize cameras for linear capillary waves. Krutyansky et al. [11] used a 

side camera to resolve the profile of the wave, but high amplitudes are required in this case 

which inevitably introduces non-linearity. The use of a combination of cameras allows 

complete space-time reconstruction of the fluid surface motion (stereoscopy), which was used 

to analyse non-linear gravity waves [64]. All these apparatuses are essentially profilometers. 

There are other ways to access the characteristics of the wave. For example, Strickland et al. 

used fluorescent imaging to obtain a map of the adsorption of a fluorescent lipid [48] (the 

adsorption wave is conjugated to the mechanical surface wave, see sec. 3 below). Another 

example is the determination of the velocity of tracer particles, which is often used to 

characterize non-linear gravity waves [40]. 

 The post-processing of the data is much simpler for the point methods – the amplitude 

vs. time data can be analysed via fast Fourier transform (if the wave does not decay with time) 

or via regression (for linear monochromatic decaying wave). The slow and intricate image 

processing is a drawback of most space-time methods (see, e.g., [67]). The algorithms for 3D 

image reconstruction are particularly well-developed for the variants of the Schlieren 

technique [60,63]. 

 All methods for characterization of capillary waves on the surface of drops and jets are 

space-time. For the characterization of capillary waves on liquid filaments, optical approaches 

have been used extensively [68,69,70,71]. The most common of these techniques is 

shadowgraphy, where the jet or the droplets are placed between a light source and a camera. For 

example, Dong et al. [71] used this approach to observe liquid thread break-up caused by the 

instability of propagating capillary waves. Wang et al. [72] characterized the propagation of 

capillary waves on images of a liquid thread at various Ohnesorge numbers, liquid thread aspect 

ratios, and surface perturbation amplitude. In this way, they were able to establish a map of the 

break-up regimes, and verified a capillary wave superposition model that predicts the fate of 

the thread. This map facilitates the control of the break-up to avoid formation of satellites in 

drop-on-demand inkjet printing applications. The satellites are eliminated by increasing the 

viscosity, as the viscous friction dampens the capillary waves [71]. The oscillation of a liquid 

thread contracted into a drop has been used to measure the surface tension and – allegedly – the 

viscosity of the liquid, via the oscillation period and the damping rate [73,20]. Similarly, the 

oscillation of electrified conducting drops surrounded by a dielectric fluid was optically 

observed by Mohamed et al. [74]. The temporal evolution of the drop apex can actually be used 

to measure the liquid dynamic properties in a similar manner. 

 The shadowgraph visualization of capillary waves on jets and droplets can be done with 

high-speed video camera or a stroboscopic system, in which a strobe illumination is used to 

visualize periodic events. In the latter system, sequential images are taken with incremental 
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trigger delay to observe the phenomena and take measurements with time interval of the order 

of 10 µs [75]. This provides an inexpensive visualizing system which has been used, for 

instance, to study the role of capillary waves in the break-up regimes of electrified jet [29] and 

to measure the jet break-up length [28].   

 The break-up in jets is caused by the Rayleigh-Plateau instability (waves of wavelength 

longer than the circumference of the jet diverge). The Rayleigh dispersion relation [76] 

identifies the most unstable wavelength and allows the estimation of the size of drops generated 

from the jet break-up. Experimental visualization of Gaussian wave packets evolution in 

cylindrical jets combined with temporal theoretical analysis found that the growth rate of the 

wave indeed corresponds to the maximum of Rayleigh dispersion relation [77].  Recently, the 

capillary wave profile on the jet surface was extracted using a laser photodiode pair to study 

self-stimulated dynamics of jets [78]. This was used to create a feedback loop to control the jet 

break-up by tuning the inlet pressure perturbations to optimal frequency with minimum 

stimulation amplitude. 

 Experimental difficulties. A major problem of the capillary wave characterization 

techniques is that they frequently produce unreliable results, for no apparent reason. The surface 

elasticity determined by this method is often inadequate. For example, Wasan et al. [38] found 

Gibbs elasticity that passes through a maximum and strongly disagrees with the one determined 

from the surface tension isotherm. Their tentative explanation with phase transition is unlikely 

– the LE-LC should appear at higher concentrations for the surfactant they studied. Lemaire 

and Langevin [39] found serious disagreement between the surface tension measured with 

capillary wave and with a Wilhelmy plate for myristic acid on water for longitudinal waves. 

Even for the regular Laplace waves, the surface tension determined from the wavelength can 

be quite inaccurate, e.g., Davies and Vose [43]  reported an error of ~2 mN/m for hydrocarbon 

surfactants, and even higher for fluoroderivatives and proteins. The presence of surface active 

impurities is often blamed for that, and careful cleaning of the surface is required before the 

measurements. Suction of the outermost surface layer via a micrometer syringe is a widely 

used [4,43]; rinsing the surface with a movable barrier is also efficient [4]. However, 

meticulous cleaning does not resolve completely the problem with the low accuracy of the 

method. Moreover, the deviations and the low reproducibility are typical for dense surfactant 

monolayers, where impurities should have a minor effect. Barrier adsorption-desorption 

process is blamed for the negative effective surface viscosity reported by the light scattering 

method, but the phenomenon has never been clarified [6]. 

 

3 Theory 
 

3.1 Flat waves on a surface covered with a surfactant 
Consider a forced oscillation of the surface progressing in x direction, of frequency  and 

angular frequency  = 2. The shape of the surface is given by the equation of a progressive 

decaying flat wave: 

 
( ) ( )

di / 0S

c

2π ( )
e e cos

kx t x L x x t
z a a





− − − 
= =  

 
. (1) 

Here, zS is the (normal) z-coordinate of the surface, k is the complex wave number,  = 2/Re(k) 

is the wavelength, Ld = 1/Im(k) is the decay length, x0(t) = x0(0) + t is the phase, ac is a 

complex amplitude and a is amplitude at x = 0. Only linear waves are considered here (a << ). 

 The liquid (aqueous solution of octanol in our experiments) occupies the semi-infinite 

space z < 0; the wavelength is significantly smaller than the depth of the trough in our 
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experiment, so no correction is needed for the long wave effect (cf. ref. [34]). The wave results 

in oscillating velocity field in the vicinity of the surface: 

 ( )i
( )e

kx t

z zv V z
−

= ,      ( )i
( )e

kx t

x xv V z
−

= ; (2) 

similarly, the pressure oscillates around the hydrostatic profile p0 – gz, 

 ( )i

0 ( )e
kx t

p p gz P z



−

= − + . (3) 

The complex amplitudes Vz, Vx and P decay exponentially with depth [3,41]: 

 
2

( ) ekzP z a
k


= ;   ( )( ) e 1 ekz mz

x

m
V z a

k
  

 
= + − 

 
;   ( )( ) i e 1 ekz mz

zV z a   = − + −  . 

  (4) 

Here, the viscous decay number m and the complex weight factor  are related to the wave 

number k as 

 2 2 i /m k  = − , (5) 

 21 2i /k   = + . (6) 

Thus, at the oscillating surface of a viscous fluid, there exist two zones. The first one is thicker – 

the amplitude decays by a factor of 2.7 for a distance of /2 ~ 100-500 m (in the frequency 

range we study); in this zone, the pressure and velocity profiles do not differ much from those 

in an ideal fluid and the particle trajectories are circular. The second zone is of smaller 

thickness, 1/Re(m) ~ 25-30 m, and there the amplitude of oscillations in x-direction is larger 

than the one in z-direction (since the ratio m/k in eq. (4) is large), i.e. the particle trajectories 

are elliptical right next to the surface. 

 The mechanical wave is conjugated with oscillating material fluxes. When surfactant is 

present, its concentration oscillates synchronously with the wave: 

 ( )i

0 1 ( )e
kx t

c c C z
− = +

 
. (7) 

In addition, at the surface, the adsorption and the surface tension oscillate around their 

equilibrium values 0 and 0: 

 ( )i

0 1 e
kx t

a


 
− = +

 
,   ( )i

0 e
kx t

a E


 
−

= − . (8) 

Here, a is the relative amplitude of the adsorption perturbation wave, and aE is the amplitude 

of the surface tension wave; E is the Gibbs elasticity of the surface. The oscillation of  and c 

is experimentally accessible for fluorescent surfactants [48]. Let the barrier adsorption-

desorption kinetics have negligible effect on the capillary wave characteristics (this is valid for 

octanol; for alcohols higher than decanol, we expect considerable role of the barrier adsorption-

desorption [79]). Under this assumption, local equilibrium is established between the adsorbed 

monolayer and the subsurface solution, and the amplitudes C and a are related as: 

 C(z = 0) = aE/RT0, (9) 

where R is the gas constant. The amplitude of oscillation of the concentration varies with z as 

 C(z) = C(z = 0)elz, where 
2 2 i il k

D D

 
= −  − . (10) 

The thickness of this diffusion layer is of the order of 1/Re(l) ~ 0.5-1 m for the system we 

study. 

 The force and the mass balances at the surface determine  (see eq. (6)), a, and the 

dispersion condition (the relation between k and ). For soluble surfactants such as octanol, the 

dispersion condition of the wave corresponds to one of a viscoelastic surface: 
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2
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k gk
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
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−

+

, (11) 

where  is the complex surface elasticity, given by 

 

1

2
1 i

DcE l
E

RT


 

−

 
= + 

 
.  (12) 

The diffusion term in eq. (12) becomes important at low frequency, namely  < Dc2E2/R2T24 

(~1 Hz for 0.3 mM octanol). However, at such frequencies (gravity waves), the elasticity terms 

in the dispersion condition (11) are small, so the effect of the diffusion process on the wave 

properties is usually modest and appears in a limited range of frequencies (mostly for gravity-

capillary waves). For the range we study (v > 300 Hz), the diffusion term in eq. (12) is negligibly 

small and one can set  = E: 

 

( )

( )

2
2 3

2
2 3

2

2

4

1

E
k m k m k

k gk
k k mE



 




 

− −

+ = +
−

+

. (13) 

These results were derived by Levich [3] for complex  rather than complex k and in somewhat 

different, but equivalent, form. Equivalent results were obtained also by Lucassen and 

Hansen [80] and others. Eq. (11)&(13) have been challenged many times [43,81], based on 

disagreement with experimental results from the surface relaxational spectrometers1. For the 

monolayer we study, however, eq. (13) appears to be accurate, see sec. 4.3. 

 Approximate solutions to eq. (13) can be easily derived in two limiting cases – completely 

mobile and completely immobile surface.  

 For completely mobile surface (no surfactant), elasticity is negligible, E = 0, and eq. (13) 

simplifies to 

 ( )
2

2 2 3

2

4
k m k m k gk

 


 
+ − = + . (14) 

For real  (forced wave that does not decay in time), the dispersion relation (14) has seven 

solutions overall. Either one or two of these are physical and fulfil the conditions Re(k) > 0, 

Im(k) > 0 and Re(m) > 0 – these correspond to the Laplace and the Marangoni wave modes. 

The real part of eq. (14) is almost unaffected by the viscosity term, i.e. Kelvin’s equation 

for  [1] is approximately correct (deviations appear at  < 2/3 and  > 2/, i.e. optical 

frequencies for water but waves in the kHz for viscous fluids like glycerol). Moreover, for the 

frequencies we study, gk is relatively small compared to k3/; in addition, for the Laplace 

mode, it holds true that Re(m) ≈ −Im(m) >> Re(k) >> Im(k). This leads to the following explicit 

solution to eq. (14)&(5): 

 ( )1 i
2

m





= − ; (15) 

 

1/3

2/32π


 


− 
=  

 
; (16) 

 
1 Eq. (13) is a source of confusion for yet another reason: the first classical work of Levich [3] contains a typo 

which persists in some secondary sources. The other important work in the field, ref. [80], uses a wave form with 

negative  (corresponding to wave propagating backwards), which has also been a source of errors. 
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 d0 3 / 4L  = . (17) 

The last formula was derived by Stokes [2]. The index 0 in Ld0 stands for neat surface (no 

surfactant). 

 The limiting case of a completely immobile surface corresponds to E → ∞. If we use 

eq. (5) and neglect the gk term, at E → ∞ we can simplify the imaginary part of eq. (13) to  

 ( ) ( )3Re Imk k m k



+ =   ,  (18) 

where for m and  the approximations (15) and (16) still hold. Solving this equation for 

Ld = 1/Im(k) yields 

 
1/2

d 1/2

6 1

1 2π

Re
L

Re

+

 −

−
= 

+
, (19) 

where the dimensionless group Re is the Reynolds number for the wave (cf. [82]), 

 
28π

Re



= , (20) 

with characteristic velocity  ~ (/)1/2. The value of Re is of the order of 50 for the system 

we study. 

 The general case. As the elasticity increases from 0 to ∞, the decay length Ld changes from 

Stokes’ value Ld0 for a fully fluid surface, eq. (17), to Ld∞ of the completely solidified one, 

eq. (19). However, the function Ld(E) passes through a pronounced minimum, as widely 

discussed in the literature [4,3]. For aqueous systems, this minimum appears around 

E ~ 10 mN/m. Moreover, there is little dependence of Ld on E for E > 50 mN/m and below 

E < 1 mN/m, so this is the range of values of E that can be measured using the decay length of 

the Laplace waves. The current practice for extraction of the viscoelastic properties of the 

surface from the data for  and Ld is to solve numerically the dispersion condition (13) (or a 

variant of it). This is cumbersome because the dispersion equation has multiple solutions (two 

physical and many unphysical), and the dimensionless groups in the equation vary by orders of 

magnitude as the frequency changes, which might produce numerical problems. 

 An approximated solution is useful with such problems. One such can be obtained by 

expanding the elasticity term in eq. (13) in series with respect to the large parameter 2Ld/ 
(and then proceed in a manner similar to the derivation of eq. (19) from eq. (18)). The derivation 

is straightforward but involved; the result reads: 

 

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

4 5/2 3 2 2 2 3/2

2 2 1/2

d

4 3 3 5/2 2 2

2 3/2 1/2

12 2 13 12 4 7 13 6

             44 43 12 32 15 3 82π

2 2 1 2 1

             8 1 2 7 3 2 4 1 1

e Re e e Re e e e Re

e e e Re e e Re eL
Re

e Re e e Re e e Re

e e Re e e Re e Re



 − + + + +
 
 − + + + + + −
 

=
 − + − −
 

+ + − + + + −  

. (21) 

Here, e = E/ is the dimensionless elasticity (0-3 for most surfactant monolayers), and Re is the 

Reynolds number given by eq. (20). The error of this approximation is less than 3% (Figure 2). 

 Kelvin’s formula (16) is actually inaccurate for surfaces with surfactant, which can be 

important given the high experimental precision for the wavelength achievable with modern 

surface wave apparatuses. A more accurate result can be obtained by solving iteratively the real 

part of eq. (13) for . If Kelvin’s wavelength is treated as the zeroth approximation 0, we can 

substitute  for 0 in the small terms in eq. (13) – namely, the real part of the elasticity term and 

gk. The elasticity term is then again expanded in series at 2Ld/0 → ∞; leaving the leading term 

of this expansion is sufficiently accurate. The large term Re(k3/) is approximated as 

83/0
3
×[1−(−)]– 6/Ld

20. Solving eq. (13) thus approximated leads to 
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( ) ( )

( ) ( )

22 2 3/2 1/2 1/3

0 d

4/3 1/323/2 2 1/2
0 0

1 2 2 1 2π

33 2 2 1 1

e Re e e Re eRe eRe e L g

Re e Re e e Re e

  

   

− + + − + +  −
= − − + 

 − + + +  
 

. (22) 

The correction is significant – a monolayer elasticity of 5-50 mN/m alters the wavelength by, 

e.g., 20 m; for comparison, a surface tension increase of 3 mN/m will have the same effect. 

Similar analytic approximations have been obtained by Henderson and Rajan [82]. The 

dependence of this correction on the concentration of a surfactant is illustrated in Figure 2b on 

the example of aqueous octanol solutions. 

 
Figure 2. Decay length (a) and correction of Kelvin’s equation for the wavelength (b) as a 

function of the concentration of octanol in water at three frequencies. Solid lines: exact 

solution to the dispersion condition (13); dashed lines: the approximate solutions (21)&(22). 

The surface tension and the elasticity are computed from the sticky disc model at each 

concentration, see SI1. 

 Waves decaying with time. In the dispersion relation (13), we assumed that k is a complex 

wavenumber (= 2/ + i/Ld), while  is a real angular frequency. The equation has the exact 

same form for real wavenumber (= 2/, a space sinusoid) and a complex frequency 

( = 2 – i/td, where td is the decay time). If k = f() is the same dispersion function then one 

can write for each of these cases: 

(time-decaying wave) 
time-decaying d

2π i
f 2π

t




 
= − 

 
; (23) 

(space-decaying wave) 
space-decaying d

2π i
f(2π )

L



+ = . (24) 

For waves of decay length Ld much longer than  and decay time much longer than the wave 

period, the first relation (23) can be expanded into series with respect to td, then f(2) can be 

substituted according to eq. (24), and finally df/d| = 2 can be expanded in series with respect 

to Ld. The result reads: 

 ( ) space-decaying

2

2πtime-decaying d space-decaying d space-decaying d

d2π d f i 2π i 1 i
2π

d d
f

t L t 




    =

 −  + + , 

 i.e. time-decaying space-decaying     and 
2d

g

d

d

d

L
V

t





 − = . (25) 

Thus, the decay length and the decay time are related through the group velocity Vg of the 

wave [5]; moreover, the wavelengths of the space-decaying and time-decaying waves are 

approximately the same. It must be kept in mind that these relations are valid approximations 

L
d

[m
m

]

c [mM]

400 Hz

600 Hz

c [mM]

(
 −


0
)/


0
, 
%

a
b
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for the Laplace mode waves, but not for the fast-decaying Marangoni mode. Even for the 

Laplace waves, and especially close to the damping maximum, both relations (25) are 

inaccurate. It should be also noted that the hydrodynamic problem allows a whole family of 

waves that decay both in space and time, i.e. proportional to 

 ( )
d d

exp i cos 2π exp
x x t

kx t t
L t

 


   
− = − − −      

    
. (26) 

The decay length of such waves varies with the decay time as 1/Ld = 1/Ld,space – 1/(Vgtd). Thus, 

a source oscillating with amplitude that decays with time (with td between td,time and ∞) will 

excite a wave that has a decay length somewhere between Ld,space and ∞. 

 Recent developments. The theory of capillary waves has made significant progress in the 

last two decades. Particularly important are the advances in the field of non-linear waves, which 

were reviewed in ref. [40]; the recent works on the theory of thermal capillary waves has been 

discussed in ref. [6]. The main theoretical results for the dispersion relationship of ripples from 

before 1996 have been summarized in the detailed review by Noskov [4]. Here, the work on 

ripples from after 1996 is considered. 

 Rajan and Henderson [82,83] generalized several previous theories to obtain the dispersion 

relation for a wave at the interface between two Newtonian liquids covered with an elastic 

monolayer of an insoluble surfactant. They also did the painstaking work of giving approximate 

solutions of the type of eq. (21)-(22) to the dispersion equation. Rajan [42] extended this work 

to another important case – a flat film of a fluid between two other fluids. 

 One relatively new development is the analysis of the dispersion condition for viscoelastic 

media such as gels and biological soft matter. Onodera and Choi [84] investigated the waves 

on the surface of an elastic material. They showed that the elastic Rayleigh mode exists as a 

surface wave only at low frequencies. Above a certain critical frequency (cr = G3/2/1/2, where 

G is the shear-elastic constant), the Rayleigh wave is no longer localized at the interface and 

instead extends to the whole bulk of the elastic material. As for the capillary modes, it was 

shown that they induce the emission of diverging elastic waves normal to the surface which 

dissipate the energy of the capillary wave, i.e. the capillary waves are also not true surface 

waves anymore. Onodera and Choi accordingly introduced the term pseudo-surface or leaky 

surface capillary waves. If the damping is not strong (G is small) these waves can still be 

detected. The dispersion equation they follow is 

 2 3 24G
k k




 
= + . (27) 

Thus, short waves of this type approach Kelvin’s dispersion relation, while long waves are 

elastic dispersionless (as  ~ k) and appear as a second Rayleigh mode. Chantelot et al. [49] 

investigated the waves at the surface of a gel layer of finite thickness. They showed that the 

confined thickness results in occurrence of multiple modes at low frequencies, both 

theoretically and experimentally. Kappler, Netz, and Zendehrouud [85,86] analysed interfaces 

of inherent surface viscoelasticity (i.e. with surfactant) between viscoelastic media (including 

compressible fluids, Kelvin-Voigt materials, and Maxwell materials). 

 Waves on cylindrical jets and spherical drops have not been investigated in the same detail 

as flat waves, despite the great potential for application of surface relaxational spectroscopy on 

jets and droplets as a control tool in inkjet printing [19,20,21,22]. The surface elasticity has 

been introduced only relatively recently to the dispersion condition of jet waves by Noskov [1], 

who derived an equation that corrects Bohr’s formula [87] used for the determination of the 

surface tension from the wave characteristics. Another important field of investigation are 

waves on charged surfaces, jets and droplets, which have important role in electrojetting (see, 

e.g., [28,29]). 
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4 An optical capillary wave apparatus 
  

4.1 Materials and methods 

  
Figure 3. Schematic of the experimental configuration.  

To characterize capillary waves, we built our own apparatus and developed a code to process 

the wave images captured in the experiment.  

Experimental setup. For our in-build experimental setup, mechanical generation was 

chosen as a method for wave excitation, for the purpose of versatility (see sec. 2.2). Optical 

visualization of the wave profile in space with a high-speed video camera was utilized as a 

detection method. This approach has not been used previously for the purpose of relaxational 

spectroscopy of fluid interfaces, see sec. 2.3. Using the entire profile of the wave (as opposed 

to point methods) allows large amount of data to be gathered quickly. Flat waves were studied 

since the images of flat symmetry allow for faster methods of analysis. 

A schematic of the experimental setup is shown in Figure 3. The studied liquid, 2 cm deep, 

was contained in a petri dish, 20 cm in diameter. A glass slide, of size 50×30×0.8 mm3, was 

used to perturb the liquid surface near the centre of the petri dish to create the capillary waves. 

With these dimensions in place, the petri dish wall was distant enough to avoid a reflected wave 

to interfere with the capillary waves next to the glass slide; interaction of the wave with the 

meniscus at the wall was also avoided. One side of the glass slide was slightly immersed into 

the liquid; the other side was attached to a loud speaker (VISATON, EX60S) through a 

horizontal strip. The actuation slide-speaker system allowed horizontal and vertical 

displacement by a triaxial translation stage to change the glass slide immersion depth. The 

speaker acted as an exciter moving vertically up and down and was driven by a sinusoidal 

voltage signal created by a pulse generator (TG2511A, TTi Ltd, UK) and an amplifier (Marantz, 

PM6010OSE) to control both the amplitude and the frequency of the waves. 

To detect the wave profile, a high-speed video camera (Photron, Fastcam Mini AX200) was 

placed perpendicular to the liquid surface close to the glass slide, as shown in Figure 3. Careful 

rectangulation of the waves was required – the wave propagation direction must be at an angle 

as close to zero as possible with respect to the x coordinate of the image. The photographed 

area was as close to the plate as the shade from the plate allowed (at larger distances, deviation 

from flat wave geometry should be expected). The camera was equipped with an optical 

magnification lens (EC74687, 4.5X) and was used to acquire images of 8×4.5 mm2 field of 

visualization, with spatial resolution of 8 μm/pixel. Frames of different phase were selected for 

the following analysis. A cool light source (SCHOTT, MLEP-A070W1LR) was used to provide 

uniform lighting to back-illuminate the system. 
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Figure 4. Reflection of light from the wavy surface. (Multimedia view)  

 The light rays from the light source reaches the camera after crossing the wavy liquid 

surface. The crests and troughs of the wave act as convex and concave lenses, respectively 

[9,59]. The camera records an image of grey stripes (see Figure 4 multimedia view), with dark 

grey corresponding to troughs. For small amplitude of the waves, the location of the camera is 

well below the focal point of all wave crests (cf. ref. [9] where it is the opposite); as a result, 

the grey value is a linear function of the curvature of the surface. To reconstruct the wave 

profile, the mean grey value as a function of the distance x to the source was analysed. Only 

relative amplitude was obtained in this way, which is sufficient to determine  and Ld with high 

precision. Our equipment allows, in principle, to measure accurate absolute amplitude of the 

capillary wave, via variation of the distance between the camera and the surface (as in 

ref. [9,59]), but this was of no interest for the questions investigated in this work. We limited 

the studied range of frequencies between 300 and 500 Hz. However, direct tests showed that 

range from 100 to 650 Hz is easily achieved with our apparatus. 

 Materials. To test the method, 0.255 mM solution of 1-octanol was used (Sigma-Aldrich, 

99%) in deionized water, prepared and studied at 22±1 °C. There are several reasons for 

choosing this system. Octanol is a well-studied surfactant for which surface tension data are 

available [88,89,90,91] and the equation of state is parametrized [92], i.e. ,  and E are known 

with reasonable accuracy from literature. Moreover, the elasticity was measured directly by the 

oscillating bubble method [93], allowing for some comparison. Octanol is of low volatility (the 

evaporation of hexanol can affect the wave properties significantly). The barrier resistance for 

adsorption-desorption can be neglected [4] (for higher alcohols, the flip-flop process can be 

expected to affect the viscoelastic properties of the monolayer [79]). The chosen concentration 

corresponds to coverage of ~3.3 mol/m2, which is about 50% of the collapse value (~6.8 

mol/m2 for normal alkanols). This makes sure that the octanol dominates the surface, and 

adventitious surface-active impurities (which always complicate pure water experiments) will 

have a minor effect. Our reason to work at concentration of 0.255 mM was that there the 

conditions are close to maximum damping (see Figure 2), i.e. to dLd/dE = 0. This is the worst-

case scenario for the sensitivity of the measured Ld data to the value of the elasticity, so it allows 

the limiting sensitivity of the method to be determined. Preliminary experiments with other 

concentrations were done until the conditions of the experiment were optimized, but the results 

for this concentration are enough to specify the parameters of the tool we have built. 
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Figure 5. Wave reconstruction process. The mean background grey value profile is subtracted 

from the mean grey value profile of the wavy surface, to obtain the averaged-subtracted 

profile (ASP). The wavelength and the decay length are obtained from ASP via regression. 

 Data processing. An algorithm was developed to collect the grey value data from the 

captured images, to reconstruct the wave profiles, to compare them with eq. (1) and to 

determine the wavelength and the decay length via regression. Additional description of the 

code is provided in SI3 and in ref. [94]. The wave reconstruction process is illustrated in Figure 

5. The main steps of the procedure are outlined below. 

 (i) At each frequency, the code operates with N images of a wavy surface (we operated 

with N = 10-40), together with one image of the background. Each image is a square matrix of 

grey values (the images we used were 912×512 pixels). The wave travels in x-direction. 

 (ii) To minimize the background noise, the grey values of the image of the wavy surface 

and the background image are subtracted, to produce N respective subtracted pictures. Two 

methods of subtraction were tested; the first is the direct one, 

 zS = K1(I – Ibackground),  (28) 

where K1 [m/grey unit] is an arbitrary proportionality constant. The second one assumes the 

following relationship between the second derivative of the wave shape and the intensity: 

 z
S
xx = K(Ibackground – I)/I      ( ≡ I/I). (29) 

a formula that follows from the optical theory of the problem [59]; K is in m-1. Derivation is 

given in SI2. Direct tests showed that the two options (28)&(29) are nearly equivalent; we 

present below only the results from eq. (29), as it highlights the optical nature of the method 

(the grey value is proportional to the curvature of the surface rather than the absolute 

amplitude). 

 (iii) Next, the procedure averages the values of I/I along each horizontal line (i.e. for all 

y = 1-512 for our images). This produces N sets of data for I/I vs. x (averaged-subtracted 

profiles, ASP). 

 (iv) Each set of I/I vs. x data is fitted with the formula 

 
( )

d/ 0

0

2πΔ
e cos

x L

I

x xI
a a

I 

− − 
= +  

 
, (30) 

a combination of eq. (1) and (29) where a constant correction a0 is introduced. For perfect 

perturbation of the background image by the wave, the constant a0 should be equal to zero; we 

instead observed homogeneous alteration of the mean grey value (the wavy images tended to 

be darker than the background).  

 We compared different regression methods to process the image data (modified Newton, 

Sequential Quadratic Programming, Simplex). We found that the computation time and the 
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reliability were dependent less on the method and more on the initial approximation for the 

regression parameters (a0, a, x0,  and Ld). Therefore, we developed a procedure that determines 

a good initial approximation, see SI3. The regression in the final Maple code was performed 

using Maple’s default modified Newton method implemented in the LSSolve function [95]. 

 (v) Next, the regression parameters, the frequency and the standard deviation of the model 

and the data were exported to a spreadsheet where the data were filtered. Two filters were 

applied; the first one was based on the dispersion (if a datum had dispersion 20% higher than 

the minimum in a given run and given frequency, it was deleted). The second one was based 

on the Ld value – if it was outside the interval (mean Ld)±50%, the respective datum was deleted. 

The second filter was applied as, in certain images, non-linear wave effects appeared, probably 

due to imperfect oscillation of the plate, see below. The value of Ld was found to be particularly 

sensitive to this effect. 

The code allows ~40 images to be processed per minute on a standard desktop computer. 

Around 25% of the images (usually the noisy ones) could not be fitted with the code and were 

filtered out. A second version of the code was run for all those images, which used the results 

from one fit in a run as an initial approximation for the rest in the same run. With this additional 

step, only 10% of the images had to be filtered out. In general, the additional step is not 

necessary as the images lost due to filtering can be compensated for simply by using more 

images. 

 

4.2 Optimization of the experimental parameters  
The light intensity has to be carefully adjusted for optimal precision of the method. Low 

intensity of light results in inadequate contrast and grey value variation of the order of the 

background noise. On the other hand, high intensity produces non-linear transfer function 

amplitude → grey value, due to grey value approaching saturation (255 units) in the vicinity of 

the lightest spots. Figure 6 shows an example where the grey value resolution increases with 

intensity until a limit is reached above which the maxima appear flattened due to the light 

saturation.  

  
Figure 6. Effect of the intensity of the light source on the observed wave profile: mean grey 

value I of an averaged-subtracted wave profile at three intensities of illumination 

at =  Hz.   
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 Wave amplitude. The excitation system (the glass slide and the horizontal strip) has 

natural frequencies, which can be calculated from the cantilever beam natural frequency 

formula [96], 

 c c

4

s2π

n
n

K E I g
f

wl
= ; (31) 

here Ec is the modulus of elasticity of the cantilever, Ic is the moment of inertia, ls is the strip 

length, w is the load per unit length, and Kn represent a constant referring to the mode of 

vibration. When the excitation frequency of the speaker approaches a natural frequency of the 

system, resonance appears; the resulting high amplitude improves the resolution but it can cause 

chaotic disturbance, undesired complex waves, and grey value approaching saturation. This can 

be avoided by reducing the voltage of the speaker input signal. On the other hand, when the 

excitation frequency is far from the natural frequencies, the wave amplitude becomes too small 

to be detected by the visualization system. The initial amplitude can be increased by escalating 

the speaker input voltage but this is limited to the maximum power input that the speaker can 

handle. We preferred another approach to increase the amplitude when needed – by altering the 

immersion depth and angle of the slide. 

Slide immersion depth and angle. We used ultra-thin glass slides under inclination angle 

of  = 90°, 105° and 120°. At angles higher than 120°, complex waves were excited, perhaps 

due the large liquid contact area with the slide side; therefore, we did not study such angles. 

The immersion depth of the slide edge in pure water was varied from d = 0 to 4 mm (beyond 4 

mm, the wave amplitude became independent of d). 

 
Figure 7. Effect of the glass slide angle and the immersion depth on the wave amplitude. The 

mean grey value in the maximum nearest to 3.7 mm is plotted. The definition of inclination 

angel () and immersion depth (d) are shown in the inset.  

 The results in Figure 7 show the effect of the immersion depth d on the wave amplitude at 

a distance of 3.7 mm away from the glass slide. For plate normal to the surface ( = 90°), the 

amplitude increases with the immersion depth until it reaches a turning point at 1.5 mm depth 

above which the amplitude starts to decrease. Increasing the angle to 105° leads to an increased 

peak value at lower immersion depth at 0.5 mm. This turning point corresponds to the optimum 

d and  values to maximize the amplitude for frequencies far from the natural frequencies of 

the actuation system, and most experiments were performed with this configuration. By 

increasing the angle  further to 120°, the turning point disappear and the amplitude 

monotonously decreases with depth.  
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4.3 Wavelength and decay length 
 

In this section, the results from three runs of the apparatus are analysed. The runs were with 

slight variation in conditions (different observation field, varied amplitude). A programme of 

frequencies was investigated in each run. The frequency range between 300 and 500 Hz was 

studied.  

 We observed a significant variation of the noise with frequency: for example, all wave 

images at 360 Hz were significantly less noisy than those at 500 Hz, see Figure 8. Unexpectedly, 

the noisiness of the images did not correlate strongly with the standard deviation of  and Ld 

determined from a set of images at a single frequency. Thus, the values of Ld determined from 

the noisy images at 420 and 500 Hz were as reproducible as those for the smooth images at 300 

and 360 Hz. The main source of noise was most probably overtone vibrations of the mechanical 

unit near the resonance frequencies, see eq. (31). In certain configurations (high power and 

large distance between the surface and the camera), non-linear relationship between grey value 

intensity and wave amplitude was observed, i.e. the approximated linearized relationship (29) 

became invalid. Such cases correspond to large wave amplitude, where the location of the 

camera approaches the focal point of the crests. The mild non-linear deviations from eq. (29) 

appear as higher maxima and shallower minima. Upon further increase in the wave amplitude, 

each crest produces two parallel grey value peaks separated by a shallow grey value minimum, 

and then caustics appear. These effects can be used to determine the absolute amplitude of the 

wave [9,59], but this is beyond the scope of this work. We only dealt with images in the linear 

region. 

 

 
Figure 8. Sample averaged-subtracted profiles at several frequencies. Points are relative grey 

value intensity, (I0 − I)/I, obtained from a single image after averaging along the y-axis. The 

first two examples are for smooth, and the next two are for noisy images. Calibration varies 

(18.182 and 8.7336 m/pixel).  
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 The results for the wavelength and the decay length as functions of the frequency are 

summarized in Table 1 and Figure 9. The relative standard deviation in  is ±0.5% on the 

average; the decay length Ld is determined with standard deviation of around ±7%. Overall, the 

optimal conditions for photographing the wave vary with frequency; moreover, the optimal 

conditions are different for measuring Ld and . Best results for Ld are obtained where the 

observation field is around 2×Ld in length (~5-10 mm, depending on the frequency); for the low 

frequencies, the standard deviations of Ld increase because this condition is not fulfilled. Best 

results for the wavelength are obtained for observation field of length 3-5× = 3-6 mm. 

 

Table 1. Measured wavelength and decay length vs. frequency of forced flat waves at the 

surface of 0.255 mM solution of octanol.   

 [Hz]  [mm] Ld [mm] 

300 1.610 ±0.006 7.0 ±0.5 

320 1.549 ±0.007 5.9 ±0.5 

340 1.486 ±0.008 5.5 ±0.3 

360 1.417 ±0.011 5.2 ±0.2 

380 1.370 ±0.012 4.8 ±0.4 

400 1.330 ±0.005 4.9 ±0.3 

420 1.283 ±0.007 4.6 ±0.3 

440 1.250 ±0.007 4.5 ±0.3 

460 1.211 ±0.006 4.5 ±0.4 

480 1.179 ±0.009 4.5 ±0.5 

500 1.143 ±0.003 4.6 ±0.3 

 
 

Figure 9. Wavelength and decay length of waves at the surface of 0.255 mM aqueous octanol. 

Points: measured data, see Table 1. Solid lines: theory, eq. (13) with  = 62.0 mN/m 

(measured independently) and E = 10.6 mN/m (fitted value). To indicate the sensitivity to the 

surface elasticity, the shift of the theoretical line for E = 10.6±1 mN/m is indicated in the 

second plot. Dashed line: wavelength calculated via Kelvin’s equation. 

 The final question is how to use the measured dependences of  and Ld vs.  to determine 

the properties of the surface. For the system we study, all parameters of eq. (13) are known, 

i.e. the dispersion relation is formally a predictive equation. However, there is significant 

uncertainty in both surface characteristics involved, the surface tension  and the surface 

elasticity E. 
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 We measured the surface tension of the studied solution directly,  = 62.0 mN/m, using 

the pendant drop method. An image of a pendant drop was taken using a CCD camera (uEye 

UI-2230-C, IDS) with a microscopic lens (Optem Zoom 125) and processed using ImageJ 

software to calculate the surface tension. The pendant drop was kept inside enclosed transparent 

cell to avoid any evaporation; five minutes were allowed to reach equilibrium. The 

measurement was done at 22 °C. The measured value  = 62.0 mN/m can be compared with 

literature data. At octanol concentration of 0.255 mM, the variation in  reported in the 

literature is between 62 and 66 mN/m (see SI1). A third value can be obtained from Ivanov’s 

sticky disc adsorption model parametrized for the adsorption of the whole homologous series 

of alkanols at water|air [92]; this model yields  = 65 mN/m (see SI1 for details). Both the 

measured and the computed value of  fall in the range of values reported in the literature. The 

sticky disc model was further used to compute also the adsorption  and the surface elasticity; 

the results are  = 3.3 mol/m2 and E = 10.5 mN/m. The error in E can be expected to be similar 

to that in , i.e. ±2 mN/m. For comparison, for 0.3 mM octanol, Wantke et al. [93] determined 

E = 9 mN/m from tensiometric data, and E = 13 mN/m using the oscillating bubble method. 

Finally, for the density and viscosity of the solution at 22 °C, the following values were used: 

 = 997.8−1.2 = 996.6 kg/m3 (1.2 kg/m3 is correction for the density of air) and 

 = 0.9573 mPa·s. 

 The simplest way to extract the elasticity from the capillary wave measurements is by 

fitting the data for Ld vs.  with the approximate eq. (21), with eq. (20) and (16) substituted in 

it. This yields good regression (Figure 9); the best fitting value of the Gibbs elasticity is 

E = 10.3±1.1 mN/m, in excellent agreement with the value from the sticky disc model (see 

Table 2). 

 However, Kelvin’s equation (16) is not a particularly good approximation for the 

wavelength, because the elasticity E has a significant effect on , see eq. (22). For example, at 

300 Hz, the exact wavelength that follows from the dispersion equation (13) with  = 62.0 and 

E = 10.5 mN/m is  = 1.613 mm; in comparison, if the elasticity is ignored, one obtains 

 = 1.637 mm. The experimental wavelength is 1.610±0.006 mm. This means that the effect of 

E on  (which is nearly always ignored in the literature [34,43]) is actually significantly higher 

than our experimental uncertainty: from the values above, the effect of the elasticity on  is 

1613−1637 = −24 m, while the experimental standard deviation of  is ±6 m. Gravity also 

has non-negligible effect on  (+6 m at 300 Hz) and has to be accounted for. In comparison, 

the diffusion correction in the dispersion condition (11)-(12) has effect smaller than the 

uncertainty limits: the diffusion coefficient of octanol is 7×10-10 m2/s [79], and taking it into 

account leads to increase in the theoretical values of  by ~2 m and of Ld by ~0.02 mm in the 

studied frequency range. 

 Therefore, a more accurate approach for the determination of E from Laplace wave 

characterization would take into account the data for both  and Ld. To demonstrate that, we 

constructed the following objective function for the regression: 
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The weight factors  and Ld were set equal to the mean experimental standard deviations from 

Table 1, 0.007 and 0.37 mm. The theoretical values th and Ld,th were computed in two ways. 

The first is from the exact dispersion equation (13); all seven solutions were found using the 

default Maple routine for complex polynomial equation, and the correct Laplace mode solution 

was identified as the physical solution of longer Ld. The minimum of 2 was found at 

E = 10.6±0.9 mN/m, i.e. the use of the data for  decreased the uncertainty in E by 20%. The 
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second way to compute th and Ld,th is through the approximate solutions (21)&(22). The result 

is the same, and the optimization procedure is faster by 2-3 orders of magnitude. However, the 

first approach has the benefit of being easily generalized to more complicated dispersion 

equations (e.g., diffusion must be accounted for at  < 100 Hz). 

 Finally, we tested how accurate would a capillary wave method be for determination of the 

surface tension  of surfactant systems. We minimized the function (32) with respect to two 

parameters, E and  (rather than fixing  to the value 62.0 mN/m measured with the pendant 

droplet method). The optimization yields best values  = 61.7 mN/m and E = 10.4 mN/m. The 

uncertainty in  is around ±0.3 mN/m (compared to ±0.2 mN/m for pendant droplet); however, 

using two parameters instead of just one increases the uncertainty in E, and we see the capillary 

wave apparatus most of all as a method to measure elasticity. 

 The results from the regressions are compared to literature data for  and E of octanol in 

Table 2. 

 

Table 2. Comparison of the measured surface tension and elasticity to literature data. 

 literature/theoretical 

values 

one-parametric 

regression 

two-parametric 

regression 

C 0.255 mM   

 a 62.0 mN/m 
b 62…66 mN/m 

c 65 mN/m 

fixed toa 62.0 mN/m 61.7 ± 0.25 mN/m 

E c 10.5 mN/m 10.6±1.0 mN/m 10.4±1.2 mN/m 

 c 3.3 mol/m2   
a Surface tension measured directly with a pendant droplet. b Published tensiometric 

data [88,89,90,91]. c Computed from Ivanov’s sticky disc adsorption model [92] (see SI1). 

 

5 Conclusion  
 

We constructed a surface wave apparatus that combines a high-speed camera with a mechanical 

oscillator, to measure the wavelength and decay length of flat Laplace waves. The detection 

method is suitable for small-amplitude linear capillary waves of frequency in the range 

102-103 Hz. The main advantages of the technique are: 

 (i) simple construction and inexpensive;  

 (ii) high precision (±7 m or 0.5% for , and ±0.4 mm or 7% for Ld); 

 (iii) quick procedure for extraction of  and Ld from the images. 

We demonstrated that, for octanol solution of known  and E, the apparatus gives both  and 

Ld equal to the theoretical values, within the experimental uncertainty. 

 Compared to other methods, it seems that only very few works report higher precision in 

the determination of  and Ld than what we achieved. Shmyrov et al. [34], who also used a 3D 

reconstruction technique, reported data with 0.5% error in , and 1% in Ld for pure liquid, but 

this increased to 1% and 5%, respectively, for waves damped by surfactant [18]. Our apparatus 

seems to be of similar precision to those in Ref. [4,8,43] and better than many others (error of 

±50% is common for Ld [46]). The wave data obtained with our apparatus allowed 

determination of the surface elasticity E with precision of ±0.9 mN/m for the test system we 

investigated, which is a good result compared to alternative methods [93]. This makes the 

capillary wave technique a useful source of data for the equation of state of monolayers for both 
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soluble and insoluble surfactants. Surface elasticity data are particularly sensitive to the lateral 

attraction parameter  [98], and allow surface phase transitions to be detected, which could be 

otherwise difficult for soluble monolayers [99]. The apparatus allowed surface tension to be 

simultaneously measured, with precision of ±0.3 mN/m. We showed that the surface elasticity 

affects significantly the wavelength (rather than just the decay length) of the capillary wave, to 

well above the experimental precision. The disregard of the effect of E on  is the reason for 

the low accuracy of surface tension determined from the wavelength data reported in the 

literature (±1-2 mN/m when surfactant is present, compared to ±0.3 mN/m for neat surfaces 

[34,43] when Kelvin’s equation is used without correction for E).  

 Possible improvements and range of applications. It is possible to achieve significantly 

better precision of , Ld and E determined with the technique developed. To do so, one can  

 (i) use more images. Currently, we use 10 images at most frequencies, 512×912 pixels. 

Using 100-1000 is easy and will improve the precision of the instrument dramatically.  

(ii) Better control of the temperature is needed for a high-precision instrument (currently, 

T is constant within ±1 °C). 

(iii) Better elasticity values will be obtained if wider frequency range is studied 

(100-1000 Hz should present no difficulty). 

(iv) Better control of the edge effects (especially for longer waves, deviations from flat 

symmetry appear). 

The simplicity of our equipment means that the method is very flexible. With appropriate 

processing codes, we can study waves decaying in time (not just in space); waves in thin liquid 

films on a transparent solid substrate or on a liquid; waves of cylindrical symmetry from a point 

source (as in ref. [34]); waves for monolayers for which the imaginary part of the complex 

elasticity is significant (i.e. the adsorption-desorption rates can be investigated). The apparatus 

can be used also to study the effect of evaporation on the dispersion equation under controlled 

conditions.  

 

 Supplementary materials: Surface tension isotherm of octanol (Section SI1); Light 

refraction by a flat wave (Section SI2); Code for processing the camera images (Section SI3). 
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Nomenclature 
 

a  wave amplitude 

c  surfactant concentration 

D  bulk diffusion coefficient 

E  surface Gibbs elasticity, E = −d/d  

e  dimensionless elasticity, e = E/ 
G   shear-elastic constant 

I  grey value intensity 

I0  grey value intensity of the background image 

i  imaginary unit 

k  complex wave number 

l  diffusion layer decay number, eq. (10) 

m  viscous decay number, eq. (5) 

kB  Boltzmann constant 
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Ld  decay length 

p  pressure 

R  gas constant 

Re  Reynolds number of the wave, eq. (20) 

T  temperature  

t  time  

td  decay time 

v  fluid velocity field 

x  coordinate in direction of wave propagation 

x0  phase 

z  coordinate in direction normal to the surface 

zS(x) position of the surface 

  adsorption of surfactant 

  viscosity 

  wavelength 

  frequency 

  complex weight factor, eq. (6) 

  mass density 

   surface tension 

  angular frequency 
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